Data Science for Building Energy Simulation

Adrian Chong

Assistant Professor Department of Building School of Design and Environment

Email: adrian.chong@nus.edu.sg

Postdoctoral Researchers

Hongyuan Jia Postdoctoral Fellow

Wenxin Li Postdoctoral Fellow

PhD Students / Research Assistants

Shuxu Qin Research Apprentice

Long Zheng PhD Student

Sicheng Zhan PhD Student

Siyu Cheng PhD Student

Yaonan (Claire) Gu

PhD Student

Yue Lei PhD Student

Overview

- Enabling Data Science
- Model calibration as an application
- Our free and open-source toolkits

400

500

600

Parameters:

unit shape
bathroom location

3. entry point

200

300

4. WWR, sill height, window height

What's next

Enabling Data Science via R

- I/O processor for structured I/O
- Parametric manager for flexible and extensible simulations

Jia, H. & Chong, A. (2021). Eplusr: A framework for integrating building energy simulation and data-driven analytics. Energy and Buildings, 110757.

Structured I/O

Relational Database | Object-oriented | Tidy data

 Large volumes of simulation data easily reduced to focus analysis on the most relevant data

© Copyright National University of Singapore. All Rights Reserved

Parametric Manager

- Easy management of large parametric simulations
- Runs all parametric simulations in parallel

© Copyright National University of Singapore. All Rights Reserved.

Example Application: Automated Calibration

...

Copyright National University of Singapore. All Rights Reserved.

Continuous Model Updating

initial re-calibration re-calibration re-calibration calibration time-series database measured data (training data) Model continuously updated priors ... using real time data from smart model 3 priors posteriors meter if Web API available model 2 priors posteriors model 1 posteriors define initial priors model 0 time t_{init} t_{init} + T t_{init} + 2T t_{init} + 3T

Chong, A., Xu, W., Chao, S., & Ngo, N. T. (2019). Continuous-time Bayesian calibration of energy models using BIM and energy data. Energy and Buildings, 194, 177-190.7.

Reductions in Posterior Uncertainties

11

Our Free and Open-Source Developments Released under the terms of MIT License

 Bayesian calibration using Stan https://github.com/adChong/bc-stan

https://github.com/hongyuanjia/eplusr | https://cran.r-project.org/web/packages/eplusr

epwshiftr – R package for creating climate change projection weather files for energy simulation https://github.com/ideas-lab-nus/epwshiftr | https://cran.r-project.org/web/packages/epwshiftr

R for Building Energy Simulation

https://forms.office.com/r/Auv6wnH6Xj

© Copyright National University of Singapore. All Rights Reserved.

Free, Open-Access, Web-based Book

1 R Basics	≡ Q A ≛ i ¥ f ≪
1.1 Coding fundamentals in R	
1.2 Importing data	
1.3 Tidy data	R for Building Energy Simulation
1.4 Dates and times	0 00
1.5 Pipes	Adrian Chong
1.6 Regular expressions	2021-06-16
1.7 Functions	
1.8 Cheatsheets	Preface
2 Explore	
2.1 Specify outputs	This is the website for the module PF4213-Building Energy
2.2 Visualizing data	Analysis and Simulation at the National University of Singapore.
3 Modify	This book will introduce you to building energy simulation and how to perform data analytics with energy models using R. You will learn
3.1 Parse model	how to get your model into R, simulate it, transform the inputs and
3.2 Model structure	outputs, and visualize and explore them. This book is designed to
3.3 Object interdependencies	be interactive and for you to learn by doing. It is highly recommended that you do not copy and paste all the code in this
3.4 Modify inputs	book but instead type them out. Copying and pasting snippets of
4 Program	code isn't the best way to learn because more often than not you
4.1 Measures	what it does. In contrast, typing the code forces you to try to
4.2 Parametric simulation	understand what the code is doing.
4.3 Optimization	
5 Calibrate	Structure of this book
5.1 Sensitivity analysis	
5.2 Optimization	Prerequisites
5.3 Bayesian calibration	

13

Open-source web-based visual programming interface

High quality open dataset + open model

THANK YOU

adrian.chong@nus.edu.sg

https://ideaslab.io