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Overview

• Enabling Data Science 

• Model calibration as an 
application

• Our free and open-source 
toolkits

• What’s next
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Enabling Data Science via R
• I/O processor for structured I/O

• Parametric manager for flexible and 
extensible simulations

Jia, H. & Chong, A. (2021). Eplusr: A framework for integrating building energy simulation and 
data-driven analytics. Energy and Buildings, 110757. 
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Structured I/O

• Large volumes of simulation 
data easily reduced to focus 
analysis on the most relevant 
data

• Take advantage of R data 
wrangling and visualization 
capabilities

Relational Database | Object-oriented | Tidy data
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Parametric 
Manager

• Easy management of large 
parametric simulations

• Runs all parametric 
simulations in parallel
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Example Application:
Automated Calibration

8



© Copyright National University of Singapore. All Rights Reserved. 

Continuous Model Updating

time

tinit tinit + T tinit + 2T tinit + 3T

initial 
calibration 

re-calibration re-calibration re-calibration

model 0

define initial
priors 

model 1

time-series
database

model 2

model 3

measured data
(training data) 

priors 

priors 

priors 

posteriors 

posteriors 

posteriors 

...Model continuously updated 
using real time data from smart 
meter if Web API available
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Chong, A., Xu, W., Chao, S., & Ngo, N. T. (2019). Continuous-time Bayesian calibration of energy 
models using BIM and energy data. Energy and Buildings, 194, 177-190.7. 
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Continuous Model Updating

time  
[months]1 12 24 36 

1 month
test data

Training data Testing data

Non-continuous

Continuous
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Reductions in Posterior Uncertainties
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• Bayesian calibration using Stan 

• eplusr – R package for integrating EnergyPlus with R

• epwshiftr – R package for creating climate change projection 
weather files for energy simulation

Our Free and Open-Source Developments

https://github.com/adChong/bc-stan

https://github.com/hongyuanjia/eplusr | https://cran.r-project.org/web/packages/eplusr

epluspar

https://github.com/ideas-lab-nus/epwshiftr | https://cran.r-project.org/web/packages/epwshiftr

Released under the terms of MIT License
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https://github.com/adChong/bc-stan
https://github.com/hongyuanjia/eplusr
https://cran.r-project.org/web/packages/eplusr
https://github.com/ideas-lab-nus/epwshiftr
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R for Building Energy Simulation
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https://forms.office.com/r/Auv6wnH6Xj

Free, Open-Access, Web-based Book

https://forms.office.com/r/Auv6wnH6Xj
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What’s Next
Open-source web-based

visual programming interface

14

High quality open dataset +
open model 
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THANK YOU
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adrian.chong@nus.edu.sg

https://ideaslab.io


