Microclimate modelling research to curb rising temperatures in Singapore

A research team from NUS is tapping on NSCC’s supercomputing resources to develop an urban microclimate model for the local Singapore environment at the NUS Kent Ridge campus test-bed environment.

As a densely-populated city-state, Singapore’s rapid urban development and growing population poses challenges, especially in trying to provide its residents a healthy, comfortable and liveable environment.

 

Rising temperature is one of the main environmental concerns. The annual average surface temperature in Singapore has increased from 26.6°C in 1972 to 27.7°C in 2014 (Meteorological Service Singapore (MSS), 2015) and is predicted to rise by 1.4-4.6°C by 2099 in the context of global warming (MSS, 2015). The urban heat island (UHI) effect signifies that a city area is significantly warmer than its surrounding rural areas, which is indeed found to be quite evident. The densely built urban areas, such as central business district (CBD) area, is up to 4°C hotter than green spaces (e.g., parks, forests, catchment areas, etc.) during hot afternoons.

A group of researchers at National University of Singapore’s School of Design and Environment are making use of the NUS Kent Ridge campus as a test-bed environment for model calibration and validation to develop an urban microclimate model for the local Singapore environment.

The noise generated by modern aircraft has been a long-standing noisepollution problem since the first commercial jet-engine-powered aircraft entered in the early 1950’s. The elevated acoustic noise levels from aviation in flight has serious adverse impact on the health and well-being of people who live or work near airports. These health problems include, but are not limited to, hearing impairment, sleep disturbance, increased stress levels and the increased risk of hypertension and heart disease, which affect all age groups, especially children.

 

A typical turbofan civilian aircraft during take-off can generate an overall sound pressure level (OASPL) of approximately 100 dB, measured about 100ft away from the runway centre line. Much of the noise emission from jet-engine-powered aircraft originate from the airframe and engines. The noise produced from jet exhaust is by far the major source of noise pollution especially for low bypass ratio engines.

 

To reduce its impact on the environment and health, it is essential to understand the mechanism of noise generation, which can be challenging due to the complex physics of turbulent flow and its interaction with the acoustic field. A team of researchers at NUS’ Temasek Laboratories are utilising NSCC’s supercomputing resources in an attempt to employ the computational aeroacoustics (CAA) method with high-fidelity numerical simulations to accurately resolve the jet flow and predict its noise emissions. The research hopes to improve the understanding of the underlying physical process of noise generation and radiation.

To find out more about how NSCC’s HPC resources can help you, please contact [email protected].

 

NSCC NewsBytes August 2021

Other Case Studies